
!"#$%&'()* +','-$.'/ 0$$-12)

34 ",'/,2'5

An overview of IBM’s
SOMobjects Developer Toolkit —
including the System Object Model
and its accompanying frameworks

Version 2.0
June 1993

ii SOMobjects Developer Toolkit

Second Edition (June 1993)

The terms “SOMobjects” and “System Object Model” are trademarks of International Business Machines Corpo-
ration.

! Copyright International Business Machines Corporation 1991, 1993. All rights reserved.

An Overview of the SOMobjects Developer Toolkit

Background
Object-oriented programming (or OOP) is an important new programming technology that
offers expanded opportunities for software reuse and extensibility. Object-oriented program-
ming shifts the emphasis of software development away from functional decomposition and
toward the recognition of units (called objects) that encapsulate both code and data. As a result,
programs become easier to maintain and enhance. Object-oriented programs are typically
more impervious to the “ripple effects” of subsequent design changes than their non-object-
oriented counterparts. This, in turn, leads to improvements in programmer productivity.

Despite its promise, penetration of object-oriented technology to major commercial software
products has progressed slowly because of certain obstacles. This is particularly true of prod-
ucts that offer only a binary programming interface to their internal object classes (i.e., products
that do not allow access to source code).

The first obstacle that developers must confront is the choice of an object-oriented program-
ming language.

So-called “pure” object-oriented languages (such as Smalltalk) presume a complete run-time
environment (sometimes known as a virtual machine), because their semantics represent a
major departure from traditional, procedure-oriented system architectures. So long as the
developer works within the supplied environment, everything works smoothly and consistently.
When the need arises to interact with foreign environments, however (for example, to make an
external procedure call), the pure-object paradigm ends, and objects must be reduced to data
structures for external manipulation. Unfortunately, data structures do not retain the advan-
tages that objects offer with regard to encapsulation and code reuse.

“Hybrid” languages such as C++, on the other hand, require less run-time support, but some-
times result in tight bindings between programs that implement objects (called “class libraries”)
and their clients (the programs that use them). That is, implementation detail is often unavoid-
ably compiled into the client programs. Tight binding between class libraries and their clients
means that client programs often must be recompiled whenever simple changes are made in
the library. Furthermore, no binary standard exists for C++ objects, so the C++ class libraries
produced by one C++ compiler cannot (in general) be used from C++ programs built with a
different C++ compiler.

The second obstacle developers of object-oriented software must confront is that, because
different object-oriented languages and toolkits embrace incompatible models of what objects
are and how they work, software developed using a particular language or toolkit is naturally
limited in scope. Classes implemented in one language cannot be readily used from another. A
C++ programmer, for example, cannot easily use classes developed in Smalltalk, nor can a
Smalltalk programmer make effective use of C++ classes. Object-oriented language and toolkit
boundaries become, in effect, barriers to interoperability.

Ironically, no such barrier exists for ordinary procedure libraries. Software developers routinely
construct procedure libraries that can be shared across a variety of languages, by adhering to
standard linkage conventions. Object-oriented class libraries are inherently different in that
no binary standards or conventions exist to derive a new class from an existing one, or even to
invoke a method in a standard way. Procedure libraries also enjoy the benefit that their imple-
mentations can be freely changed without requiring client programs to be recompiled, unlike the
situation for C++ class libraries.

2 SOMobjects Developer Toolkit

For developers who need to provide binary class libraries, these are serious obstacles. In an era
of open systems and heterogeneous networking, a single-language solution is frequently not
broad enough. Certainly, mandating a specific compiler from a specific vendor in order to use a
class library might be grounds not to include the class library with an operating system or other
general-purpose product.
The System Object Model (SOM) is IBM’s solution to these problems.

3An Overview

Introducing SOM and the SOMobjects Toolkit
The System Object Model (SOM) is a new object-oriented programming technology for build-
ing, packaging, and manipulating binary class libraries.

" With SOM, class implementors describe the interface for a class of objects (names of the
methods it supports, the return types, parameter types, and so forth) in a standard
language called the Interface Definition Language, or IDL.

" They then implement methods in their preferred programming language (which may be
either an object-oriented programming language or a procedural language such as C).

This means that programmers can begin using SOM quickly, and also extends the advantages
of OOP to programmers who use non-object-oriented programming languages.
A principal benefit of using SOM is that SOM accommodates changes in implementation details
and even in certain facets of a class’s interface, without breaking the binary interface to a class
library and without requiring recompilation of client programs. As a rule of thumb, if changes to a
SOM class do not require source-code changes in client programs, then those client programs
will not need to be recompiled. This is not true of many object-oriented languages, and it is one of
the chief benefits of using SOM. For instance, SOM classes can undergo structural changes
such as the following, yet retain full backward, binary compatibility:

" Adding new methods,
" Changing the size of an object by adding or deleting instance variables,
" Inserting new parent (base) classes above a class in the inheritance hierarchy, and
" Relocating methods upward in the class hierarchy.

In short, implementors can make the typical kinds of changes to an implementation and its
interfaces that evolving software systems experience over time.
Unlike the object models found in formal object-oriented programming languages, SOM is
language-neutral. It preserves the key OOP characteristics of encapsulation, inheritance, and
polymorphism, without requiring that the user of a SOM class and the implementor of a SOM
class use the same programming language. SOM is said to be language-neutral for four
reasons:

1. All SOM interactions consist of standard procedure calls. On systems that have a stan-
dard linkage convention for system calls, SOM interactions conform to those conven-
tions. Thus, most programming languages that can make external procedure calls can
use SOM.

2. The form of the SOM Application Programming Interface, or API (the way that program-
mers invoke methods, create objects, and so on) can vary widely from language to
language, as a benefit of the SOM bindings. Bindings are a set of macros and procedure
calls that make implementing and using SOM classes more convenient by tailoring the
interface to a particular programming language.

3. SOM supports several mechanisms for method resolution that can be readily mapped
into the semantics of a wide range of object-oriented programming languages. Thus,
SOM class libraries can be shared across object-oriented languages that have differing
object models. A SOM object can potentially be accessed with three different forms of
method resolution:
" Offset resolution: roughly equivalent to the C++ “virtual function” concept. Offset

resolution implies a static scheme for typing objects, with polymorphism based strictly
on class derivation. It offers the best performance characteristics for SOM method
resolution. Methods accessible through offset resolution are called static methods,
because they are considered a fixed aspect of an object’s interface.

4 SOMobjects Developer Toolkit

" Name-lookup resolution: similar to that employed by Objective-C and Smalltalk. Name
resolution supports untyped (sometimes called “dynamically” typed) access to objects,
with polymorphism based on the actual protocols that objects honor. Name resolution
offers the opportunity to write code to manipulate objects with little or no awareness of
the type or shape of the object when the code is compiled.

" Dispatch-function resolution: a unique feature of SOM that permits method resolution
based on arbitrary rules known only in the domain of the receiving object. Languages
that require special entry or exit sequences or local objects that represent distributed
object domains are good candidates for using dispatch-function resolution. This tech-
nique offers the highest degree of encapsulation for the implementation of an object,
with some cost in performance.

4. SOM conforms fully with the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) standards.# In particular,
" Interfaces to SOM classes are described in CORBA’s Interface Definition Language,

IDL, and the entire SOMobjects Toolkit supports all CORBA-defined data types.
" The SOM bindings for the C language are compatible with the C bindings prescribed by

CORBA.
" All information about the interface to a SOM class is available at run time through a

CORBA-defined “Interface Repository.”
SOM is not intended to replace existing object-oriented languages. Rather, it is intended to
complement them so that application programs written in different programming languages can
share common SOM class libraries. For example, SOM can be used with C++ to

" Provide upwardly compatible class libraries, so that when a new version of a SOM class is
released, client code needn’t be recompiled, so long as no changes to the client’s source
code are required.

" Allow other language users (and other C++ compiler users) to use SOM classes imple-
mented in C++.

" Allow C++ programs to use SOM classes implemented using other languages.
" Allow other language users to implement SOM classes derived from SOM classes imple-

mented in C++.
" Allow C++ programmers to implement SOM classes derived from SOM classes imple-

mented using other languages.
" Allow encapsulation (implementation hiding) so that SOM class libraries can be shared

without exposing private instance variables and methods.
" Allow dynamic (run-time) method resolution in addition to static (compile-time) method

resolution (on SOM objects).
" Allow information about classes to be obtained and updated at run time. (C++ classes are

compile-time structures that have no properties at run time.)

The SOM Compiler
The SOMobjects Toolkit contains a tool, called the SOM Compiler, that helps implementors
build classes in which interface and implementation are decoupled. The SOM Compiler reads
the IDL definition of a class interface and generates:

" an implementation skeleton for the class,
" bindings for implementors, and
" bindings for client programs.

#OMG is an industry consortium founded to advance the use of object technology in distributed, heterogeneous environments.

5An Overview

Bindings are language-specific macros and procedures that make implementing and using
SOM classes more convenient. These bindings offer a convenient interface to SOM that is
tailored to a particular programming language. For instance, C programmers can invoke meth-
ods in the same way they make ordinary procedure calls. The C++ bindings “wrap” SOM objects
as C++ objects, so that C++ programmers can invoke methods on SOM objects in the same way
they invoke methods on C++ objects. In addition, SOM objects receive full C++ typechecking,
just as C++ objects do. Currently, the SOM Compiler can generate both C and C++ language
bindings for a class. The C and C++ bindings will work with a variety of commercial products
available from IBM and others. Vendors of other programming languages may also offer SOM
bindings. Check with your language vendor about possible SOM support.

The SOM run-time library
In addition to the SOM Compiler, SOM includes a run-time library. This library provides,
among other things, a set of classes, methods, and procedures used to create objects and
invoke methods on them. The library allows any programming language to use SOM classes
(classes developed using SOM) if that language can:

" Call external procedures,
" Store a pointer to a procedure and subsequently invoke that procedure, and

" Map IDL types onto the programming language’s native types.
Thus, the user of a SOM class and the implementor of a SOM class needn’t use the same
programming language, and neither is required to use an object-oriented language. The inde-
pendence of client language and implementation language also extends to subclassing: a SOM
class can be derived from other SOM classes, and the subclass may or may not be implement-
ed in the same language as the parent class(es). Moreover, SOM’s run-time environment allows
applications to access information about classes dynamically (at run time).

Frameworks provided in the SOMobjects Toolkit
In addition to SOM itself (the SOM Compiler and the SOM run-time library), the SOMobjects
Developer Toolkit also provides a set of frameworks (class libraries) that can be used in
developing object-oriented applications. These include Distributed SOM, the Interface Reposi-
tory Framework, the Persistence Framework, the Replication Framework, and the Emitter
Framework, described below.

Distributed SOM
Distributed SOM (or DSOM) allows application programs to access SOM objects across
address spaces. That is, application programs can access objects in other processes, even on
different machines. DSOM provides this transparent access to remote objects through its
Object Request Broker (ORB): the location and implementation of the object are hidden from
the client, and the client accesses the object as if were local. The current release of DSOM sup-
ports distribution of objects among processes within a workstation, and across a local area
network consisting of OS/2 systems, AIX systems. or a mix of both. Future releases may
support larger enterprise–wide networks.

Interface Repository Framework
The Interface Repository is a database, optionally created and maintained by the SOM Com-
piler, that holds all the information contained in the IDL description of a class of objects. The
Interface Repository Framework consists of the 11 classes defined in the CORBA standard
for accessing the Interface Repository. Thus, the Interface Repository Framework provides
run-time access to all information contained in the IDL description of a class of objects. Type
information is available as TypeCodes — a CORBA-defined way of encoding the complete
description of any data type that can be constructed in IDL.

6 SOMobjects Developer Toolkit

Persistence Framework
The Persistence Framework is a collection of SOM classes that provide methods for saving
objects (either in a file or in a more specialized repository) and later restoring them. This means
that the state of an object can be preserved beyond the termination of the process that creates it.
This facility is useful for constructing object-oriented databases, spreadsheets, and so forth.
The Persistence Framework includes the following features:

" Objects can be stored singly or in groups.
" Objects can be stored in default formats or in specially designed formats.
" Objects of arbitrary complexity can be saved and restored.

Replication Framework
The Replication Framework is a collection of SOM classes that allows a replica (copy) of an
object to exist in multiple address spaces, while maintaining a single-copy image. In other
words, an object can be replicated in several different processes, while logically it behaves as a
single copy. Updates to any copy are propagated immediately to all other copies. The Replica-
tion Framework handles locking, synchronization, and update propagation, and guarantees
mutual consistency among the replicas. The Replication Framework includes these important
features:

" Good response times for both readers and writers,
" Fault-tolerance against node failures and message loss,
" Simple coding rules (that can be automated) for building replicated objects,
" Graceful degradation under wide-area networks, and
" Minimal overhead when replication is not activated.

Emitter Framework
Finally, the Emitter Framework is a collection of SOM classes that allows programmers to write
their own emitters. Emitter is a general term used to describe a back-end output component of
the SOM Compiler. Each emitter takes as input information about an interface, generated by the
SOM Compiler as it processes an IDL specification, and produces output organized in a
different format. SOM provides a set of emitters that generate the binding files for C and C++
programming (header files and implementation templates). In addition, users may wish to write
their own special-purpose emitters. For example, an implementor could write an emitter to
produce documentation files or binding files for programming languages other than C/C++. The
Emitter Framework is separately documented in the SOMobjects Developer Toolkit: Emitter
Framework Guide and Reference.

7An Overview

Basic Concepts of the System Object Model (SOM)
The System Object Model (SOM), provided by the SOMobjects Developer Toolkit, is a set of
libraries, utilities, and conventions used to create binary class libraries that can be used by
application programs written in various object-oriented programming languages, such as C++
and Smalltalk, or in traditional procedural languages, such as C and Cobol. The following
paragraphs introduce some of the basic terminology used when creating classes in SOM:

" An object is an OOP entity that has behavior (its methods or operations) and state (its
data values). In SOM, an object is a run-time entity with a specific set of methods and
instance variables. The methods are used by a client programmer to make the object
exhibit behavior (that is, to do something), and the instance variables are used by the
object to store its state. (The state of an object can change over time, which allows the
object’s behavior to change.) When a method is invoked on an object, the object is said to
be the receiver or target of the method call.

" An object’s implementation is determined by the procedures that execute its methods,
and by the type and layout of its instance variables. The procedures and instance variables
that implement an object are normally encapsulated (hidden from the caller), so a program
can use the object’s methods without knowing anything about how those methods are
implemented. Instead, a user is given access to the object’s methods through its interface
 (a description of the methods in terms of the data elements required as input and the type
of value each method returns).

" An interface through which an object may be manipulated is represented by an object type.
That is, by declaring a type for an object variable, a programmer specifies the interface
that is intended to be used to access that object. SOM IDL (the SOM Interface Definition
Language) is used to define object interfaces. The interface names used in these IDL
definitions are also the type names used by programmers when typing SOM object
variables.

" In SOM, as in most approaches to object-oriented programming, a class defines the
implementation of objects. That is, the implementation of any SOM object (as well as its
interface) is defined by some specific SOM class. A class definition begins with an IDL
specification of the interface to its objects, and the name of this interface is used as the
class name as well. Each object of a given class may also be called an instance of the
class, or an instantiation of the class.

" Inheritance, or class derivation, is a technique for developing new classes from existing
classes. The original class is called the base class, or the parent class, or sometimes the
direct ancestor class. The derived class is called a child class or a subclass. The primary
advantage of inheritance is that a derived class inherits all of its parent’s methods and
instance variables. Also through inheritance, a new class can override (or redefine)
methods of its parent, in order to provide enhanced functionality as needed. In addition, a
derived class can introduce new methods of its own. If a class results from several
generations of successive class derivation, that class “knows” all of its ancestors’s meth-
ods (whether overridden or not), and an object (or instance) of that class can execute any
of those methods.

" SOM classes can also take advantage of multiple inheritance, which means that a new
class is jointly derived from two or more parent classes. In this case, the derived class
inherits methods from all of its parents (and all of its ancestors), giving it greatly expanded
capabilities. In the event that different parents have methods of the same name that
execute differently, SOM provides ways for avoiding conflicts.

" In the SOM run time, classes are themselves objects. That is, classes have their own
methods and interfaces, and are themselves defined by other classes. For this reason, a
class is often called a class object. Likewise, the terms class methods and class variables

8 SOMobjects Developer Toolkit

are used to distinguish between the methods/variables of a class object vs. those of its
instances. (Note that the type of an object is not the same as the type of its class, which
as a “class object” has its own type.)

" A class that defines the implementation of class objects is called a metaclass. Just as an
instance of a class is an object, so an instance of a metaclass is a class object. Moreover,
just as an ordinary class defines methods that its objects respond to, so a metaclass
defines methods that a class object responds to. For example, such methods might
involve operations that execute when a class (that is, a class object) is creating an instance
of itself (an object). Just as classes are derived from parent classes, so metaclasses can
be derived from parent metaclasses, in order to define new functionality for class objects.

" The SOM system contains three primitive classes that are the basis for all subsequent
classes:
SOMObject — the root ancestor class for all SOM classes,
SOMClass — the root ancestor class for all SOM metaclasses, and
SOMClassMgr — the class of the SOMClassMgrObject, an object created automatically

during SOM initialization, to maintain a registry of existing classes and
to assist in dynamic class loading/unloading.

SOMClass is defined as a subclass (or child) of SOMObject and inherits all generic object
methods; this is why instances of a metaclass are class objects (rather than simply
classes) in the SOM run time. The adjacent figure illustrates typical relationships of
classes, metaclasses, and objects in the SOM run time. (This illustration does not include
the SOMClassMgrObject.)

9An Overview

Parent
 class
 “P”

Class
 “C”

O2

On
 Object
 “O1”

...

Typical class, metaclass, and object relationships

Metaclass
 “M”

Legend: subclass–ofinstance–of

metaclass class simple object

SOMObject

!2

!n
 Object
 “!1”

...

SOMClass

SOM classes are designed to be language neutral. That is, SOM classes can be implemented in
one programming language and used in programs of another language. To achieve language
neutrality, the interface for a class of objects must be defined separately from its implemen-
tation. That is, defining interface and implementation requires two completely separate steps
(plus an intervening compile), as follows:

" An interface is the information that a program must know in order to use an object of a
particular class. This interface is described in an interface definition (which is also the class
definition), using a formal language whose syntax is independent of the programming
language used to implement the class’s methods. For SOM classes, this is the SOM
Interface Definition Language (SOM IDL). The interface is defined in a file known as the
IDL source file (or, using its extension, this is often called the .idl file).
An interface definition is specified within the interface declaration (or interface statement)
of the .idl file, which includes:

(a) the interface name (or class name) and the name(s) of the class’s parent(s), and
(b) the names of the class’s attributes and the signatures of its new methods.

(Recall that the complete set of available methods also includes all inherited
methods.)

Each method signature includes the method name, and the type and order of its argu-
ments, as well as the type of its return value (if any). Attributes are instance variables for

10 SOMobjects Developer Toolkit

which “set” and “get” methods will automatically be defined, for use by the application
program. (By contrast, instance variables that are not attributes are hidden from the user.)

" Once the IDL source file is complete, the SOM Compiler is used to analyze the .idl file and
create the implementation template file, within which the class implementation will be
defined. Before issuing the SOM Compiler command, sc, the class implementor can set
an environment variable that determines which emitters (output-generating programs) the
SOM Compiler will call and, consequently, which programming language and operating
system the resulting binding files will relate to. (Alternatively, this emitter information can
be placed on the command line for sc.) In addition to the implementation template file
itself, the binding files include two language-specific header files that will be #included in
the implementation template file and in application program files. The header files define
many useful SOM macros, functions, and procedures that can be invoked from the files
that include the header files.

" The implementation of a class is done by the class implementor in the implementation
template file (often called just the implementation file or the template file). As produced by
the SOM Compiler, the template file contains stub procedures for each method of the
class. These are incomplete method procedures that the class implementor uses as a
basis for implementing the class by writing the corresponding code in the programming
language of choice.

In summary, the process of implementing a SOM class includes using the SOM IDL syntax to
create an IDL source file that specifies the interface to a class of objects — that is, the methods
and attributes that a program can use to manipulate an object of that class. The SOM Compiler
is then run to produce an implementation template file and two binding (header) files that are
specific to the designated programming language and operating system. Finally, the class
implementor writes language-specific code in the template file to implement the method proce-
dures.
At this point, the next step is to write the application (or client) program(s) that use the objects
and methods of the newly implemented class. (Observe, here, that a programmer could write an
application program using a class implemented entirely by someone else.) If not done previous-
ly, the SOM compiler is run to generate usage bindings for the new class, as appropriate for the
language used by the client program (which may be different from the language in which the
class was implemented). After the client program is finished, the programmer compiles and
links it using a language-specific compiler, and then executes the program. (Notice again, the
client program can invoke methods on objects of the SOM class without knowing how those
methods are implemented.)

11An Overview

What’s New in the SOMobjects Developer Toolkit
The SOMobjects Toolkit is a major step up from SOM Version1.0 in terms of functionality,
usability, standardization, performance, and documentation. In particular, the SOMobjects
Developer Toolkit Version 2.0 offers the following additions over SOM Version1.0:
• C++ bindings
• Multiple platforms (OS/2 and AIX)
• Multiple inheritance (when using IDL)
• Derived metaclasses
• CORBA compliance (including IDL)
• SOM Compiler that handles both IDL and OIDL interface descriptions
• Full binary compatibility with SOM 1.0
• Improved method resolution
• Improved memory management
• Improved error checking
• Faster emitters
• Smaller and faster binaries for class libraries
• Header files that automatically prevent name collisions
• Smaller implementation header files
• Ability to package multiple classes in a single file, as an IDL module
• Ability to define (in IDL) methods that return structures
• Ability to use a C/C++ preprocessor within .idl files
• Improved incremental update of implementation files
• With IDL, full type checking and full name scoping
• Class shadowing (described in the Emitter Framework Guide and Reference)
• DSOM, which enables distribution of SOM objects across processes (see Chapter 6)
• Automatic generation and revision of an Interface Repository (see Chapter 7)
• Persistence Framework, which simplifies creating persistent objects (see Chapter 8)
• Replication Framework, which enables construction of replicated objects (see Chapter 9)
• Utility metaclasses (see Chapter 10)
• Collection classes (see Chapter 11)
• An Event Manager (see Chapter 12)
• Tools for automatically converting .csc files to .idl files (see Appendix B)
• Emitter Framework, which allows developers to write their own emitters (documented in the

Emitter Framework Guide and Reference)

12 SOMobjects Developer Toolkit

