SOMobjectsl] for Macll OS

Copyright Apple Computer Inc.
1995. All rights reserved.

SOMabjects and System Object Modd are trademarks of IBM Corporation.

SOMobjects[] for Mac OS 1 Programmers Guide 1.0

I ntroduction

This document describes version 2.0.7 of SOMobjects] for Mac OS which is based on the
System Object Model version 2.0 from IBM.

The document assumes that the reader is familiar with the System Object Model as

documented in IBM’s SOM objects Developer Toolkit: Users Guide, chapters 1-5 which
for brevity will be called “I1BM Users Guide’ in the remainder of this Release Note. The
IBM Users Guide, and other IBM documents can be found in the Documentation folder.

SOMobjects is an object-oriented programming technology for building, packaging, and
manipulating binary class libraries. Traditionally, it has been difficult to produce shared
libraries with an object-oriented C++ interface that provide binary compatibility from
release to release. With SOMabjects, these limitations of the C++ runtime are removed. It
is expected that SOMobjects will be used when an object-oriented API to ashared library is
desired.

Interfaces to a class are specified in the CORBA! Interface Definition Language (IDL)
which is described in the |BM Users Guide. Classes may be implemented in any language
for which the developer has an IDL compiler. The client of aclass may use adifferent
language than the implementation. This release of SOMobjects' | for Mac OS includes
support for development in C and C++.

Components

This release contains the following components:

» Theruntime kernel, “SOMobjectd] for Mac OS’, located in the “ System Additions’
folder.

» Kernd interfacesfor C/ C++ and IDL, located in the { Cincludes} and { SOMIncludes}
folders.

» Theruntime kernel stub library, “somlib”, located in the { SharedLibraries} folder.

» ThelDL Compiler, sont, with emitters for C and C++, located in the { Scripts} folder
with emittersin the { Tools} folder of the MPW environment.

» ThePDL facility, sonpdl , located in the { Tools} folder.

1CORBA, Common Object Request Broker Architecture is a standard of the Object
Management Group (OMG).

SOMobjects[] for Mac OS 2 Programmers Guide 1.0

* The MPW startup script, “ UserStartupesomc”, located in the “MPW Additions’ folderx.

* Programming examplesin the SOMExamples folder.

The SOMobjects] for Mac OS Runtime Kerne

The runtime kernel for Power Macintosh and CFM-68K is afat shared library consisting of
the classes SOMbj ect , SOMO ass, SOMO assMyr and SOVRegi st er edC assLi st .

I nterfaces

Interfaces to the kernel are presented as C/C++ and IDL headers. They are described in the
reference section of this document.

Development Tools

SOMobjects IDL Compiler

The IDL compiler, sonc, isan MPW script/tool which trandates IDL filesinto C and C++
headers and skeleton source files. The compiler and IDL language are documented in
Chapter 3 of the IBM Users Guide.

Syntax and Options
sont [options] source.idl...

Notes:

» Thename used by IBM, scis not available because it is already in use for the Symantec
C compiler.

* Unlikethe syntax of IBM’s sc, options may appear anywhere on the command line
(before or after source files).

* Unlikethe syntax of IBM’s sc, options under MPW are not case sensitive.

Options

-D define Defines macro for #i f def processing.
-D define=value Defines macro with avalue.

-e emitterName... Specifies emitter(s) to run.

SOMobjects[] for Mac OS 3 Programmers Guide 1.0

-keeptm

-l dirName

-m chkexcept

-m corbastring

-m cplusc

-m cpluscpp

-m level2

-m modifier

-m nomethodids

For example,
-e xh, xi h, xc
runs the emitters xh, xih, and xc in the order given.

See page 6 of this document for a description of the emitters
available with this release.

Keeps temporary files (.ctm when using the C emitter, ¢, and
Xtm when using the C++ emitter, xc).

Specifies path to be searched first for include processing.

Specifies the inclusion of exception result checking during
generation of C++ .xh class bindings. This mechanism can be
used to introduce an automatic “throw” or error handler of
some sort, removing the need to manually check exception
results after each method call.

Instructs the IDL compiler to trandate the IDL datatype
string into C/C++ ascor bast ri ng, instead of passing it
through into C/C++ unchanged (asst ri ng) . Thisisto avoid
apotential conflict shouldst ri ng become areserved word.

Specifies the use of .C for C++ file suffixes (the default C++
file suffix is.cp).

Specifies the use of .cpp for C++ file suffixes (the default
suffix for C++ filesis.cp).

Instructs the somidl compiler to allow method name
ambiguities that arise due to multiple inheritance. Note that use
of an ambiguous method name will require qualification.

Passes aglobal modifier to compiler. All of the modifiers
described in the IBM Users Guide, pages 40-48, 4-49 are
supported except for not ¢, pp=pr epr ocessor, and nopp.

Specifies that the programmer does not want global Idsto be
generated into the client bindings file. In some build
environments this reduces client and implementation code size.
It also makes the header file more readable and speeds
compilation. Ids for method names are rarely used by
programmers, if they are desired, they can be created
individually instead of relying on the compiler to generate
them. This option should generally be on, and is specifiedin
the default UserStartupesomc.

SOMobjects[] for Mac OS

4 Programmers Guide 1.0

-m noshortparents

-m notexported

-m novastatics

-m useinheritedmacros

-0 outdir

-other option

Suppresses generation of SOMaobjects 1.0 parent call through
macro formsinto the ih and xih (C and C++ implementation)
header files. When Multiple Inheritance was added to
SOMobjects, new parent call through macro forms were
created. This optimization makes the header file more readable
and speeds compilation. This option should generally be used,
and isin the default UserStartupesomc.

Thismodifier specifiesthat the interface(s) being compiled are
for internal use within one fragment only, that is, not to be
automatically exported from the fragment that is being built,
(and not to be imported from another fragment).

Suppresses generation of static procedures for trandating
variable parameter list callsto methods that takeava_l i st as
an argument in the .h (C client) header files. This can reduce
client code size on some build systems.

Specifies that the xih emitter (for C++ implementations)
should not reintroduce ancestor methods at each class level.
This makes the header file more readable and speeds
compilation. This option should generally be used, and isin
the default UserStartupesomc.

Specifies the output directory for emitted files. (Note that this
does not specify the output file itself.)

Specifies other miscellaneous options for the IDL compiler.
For details on miscellaneous options, see SOMobjects
Developer Toolkit: Users Guide, section 4.6.

Causesthe IDL Compiler to produce private versions of its
output files. Thisis necessary when producing implementation
files, and unwanted when producing client files.

Checks that names specified in the release order statement are
valid method names.

Uses verbose mode.

Turns warnings off.

IDL Compiler Emitters

The following table describes the IDL compiler emitters supported. Unless otherwise
stated, the Target Fileis created (i.e., overwritten).

SOMobjects[] for Mac OS

5 Programmers Guide 1.0

Emitter Name Target File Purpose

XC XXxX.cp (updated) Update C++ main imple-
mentation file. Note: the
C++ file extension can be
changed via- mcpl usc or -
m cpl uscpp

xtm XXX.Xtm Create C++ main
implementation skeleton file.

xih XXX.Xih Create C++ main
implementation header file.

xh xxx.xh Create C++ client header
file.

c XXX.C (updated) Update C main implementa
tionfile.

ctm XXX.Ctm Create C main implementa-
tion skeleton file.

ih xxx.ih Create C main implementa-
tion header file.

h xxx.h Create C client header file.

exp XXX.exp Create implementation ex-

portsfile, which is supplied
to the linker (required for
PowerPC development,
optional for CFM-68K)

Note: To generate apublic IDL file, thesonpd! tool isused rather than the somc compiler.
(The pdl emitter is supplied, but considered obsolete.)

sompdl

Thistool takes asinput an interface definition file (.idl) and produces asimilar file from
which the declarations of private class members have been deleted. This tool should be
used when devel oping shared libraries to produce public versions of .idl files for distribu-
tion.

Syntax

sonpdl [options] file...

Options

-d dir Specifies adirectory in which the object files are to be placed. The

SOMobjects[] for Mac OS 6 Programmers Guide 1.0

output files are given the same name as the input files. If this op-
tion is omitted, the output files are named <fileStem>.pdl where
fileSlemis the file stem of the input file and are placed in the cur-
rent working directory.

-f Specifiesthat output files are to replace existing files having the
same name even if the existing files are read- only.

IDL Compiler Shell Variables

The sont compiler uses three Shell variables to specify default values :

* SOM ncl udes search pathsfor .idl includefiles
e SOWDefi nes pre-defines for #ifdef processing
* SOMVOpti ons -m modifiersfor .idl file compilation

These are preset by UserStartupesomc as follows:
Set SOM ncl udes "{MPW I nterfaces: SOM ncl udes: "
Set SOvDefines "-D __SOMDL__ -D __ MAC "
Set SOMOptions "-m addstar -m noint -m usei nheritednacros 0
-m nonet hodi ds -m corbastring - m noshort parents"

If these options are changed, the standard pre-compiled header fileswill require
regeneration. Thisis done by generating new .h and .xh headersfor al the standard .idl
files (in { SOMIncludes}). The targets go back into { CIncludes} . The following commands
recompile the .idl files and places the resulting C and C++ headersinto the { Clncludes}
folder:

sont "{SOM ncl udes}"
sont "{SOM ncl udes}"

.idl -e h -o "{Clncludes}"
.idl -e xh -0 "{Cl ncludes}"

noun

Using SOM objects] for Mac OS

The runtime kernel provides services in the form of functions, macros and classes. There
are two significant base classes. SOMObject from which al classes descend, and
SOMClass, the base meta-class. The following section assumes an understanding of the
relationship between these classes as documented in thel| BM Users Guide.

Programmers access the kernel through its Application Programming Interface (API) and
through compiler produced Bindings. Most of the required access is provided by the
Bindings which are designed to interface efficiently with the kernel.

SOMobjects[] for Mac OS 7 Programmers Guide 1.0

Allocating Objects

The simplest way to alocate objectsis to use the C or C++ bindings generated by the IDL
compiler; New<cl assName> Or new <cl assNane>.

The 2.0.7 API provides four principal functions for allocating objects directly:
somNewbj ect , somNewer si onedObj ect , somNewObj ect ByNane and

somNewbj ect Byl d. The first two return a Static Reference while the last two return a
Dynamic Reference. More information is available in the sections on Static and Dynamic
Class Status.

Freeing objects

The recommended way to free an object reference is to use the kernel operation

sonRel easebj ect Ref er ence. The 2.0.7 SOMODbject class supports bothsonFr ee and a
new method, sonRel ease, however direct invocation of these methods can introduce
cross-platform portability problems.

When the last reference to an object is released, that object will release itsreference to its
class implementation which can potentially cause the implementation code fragment to be
unloaded. Care should be taken to avoid having objects free themselves because this can
leave stack frames pointing to code which no longer exists.

Object References

The 2.0.7 APIs are reference based. It is particularly important to understand object
ownership sinceaclass implementation may be dynamically unloaded any timeitis
considered not referenced. There are some simple guidelines you can follow which will
make your programs more robust, thread safe, CORBA compliant and self-contained.

» If you obtain an object reference as afunction or method return result, you are
responsible for releasing it when no longer needed.

« If you are returning an object reference to your caler, it should be a new or duplicated
reference which becomes the property of the caller.

 If you receive an object reference as a parameter which you'd like to hold on to, you
must obtain a duplicate reference to it viathesonDupl i cat eRef er ence method.

In order to compare object references, do not perform pointer comparison. Use the
sonConpar eRef er ence method instead.

SOMobjects[] for Mac OS 8 Programmers Guide 1.0

Class Objects

SOMabjectsl] for Mac OS provides extended facilities for class object usage for clients
with a specific need or desire to program with them. For clients who only access class
objects for instance allocation, the new kernel APIs make their access unnecessary.

Accessto class objects is obtained by the kernel operationssoniNewC assRef er ence,
sonmNewVer si onedCl assRef er ence and sonGet Dynami ¢ assRef er ence. Starting with
an existing object, you can ask it for its class object by sending it asonGet A ass message.
The kernel SOM ClassMgr object also provides access to class objects and is documented
below. Each of these operations returns a class reference which must later be released via
sonRel easeCl assRef erence.

In the System Object Model, classes are represented by class objects. Class objects are
used to control certain aspects of class behavior, such as instance object alocation. Class
objects can be obtained statically or dynamically. When aclassisfirst loaded from the disk,
itisin the unloaded state, and thereis no class object associated with the class. At this
point, there is a data structure that can be used to refer to the class. This data structureis a
link time global with the name<cl assNane>d assDat a and is amost always exported by
nameinitsDLL (inthe CFM sense). At some point when the classis used or asked for, the
class object will be constructed.

The class can have “ gtatic” or “dynamic” status. By default the classis given “static” status.
As an example of static use, the class can be loaded because an instance object was desired
using the kernel operation somNewbj ect which internally usesthe

<cl assName>C assDat a global to refer to the class. If the class object (or an instance
object) is obtained through any by name (as in runtime string) or by somld lookup services
in the runtime kernel, the classis given “dynamic” status. For example

somGet Dynani cd assRef er ence and sonFi ndd ass obtain dynamic class object
references.

SOMobjects[] for Mac OS 9 Programmers Guide 1.0

Static Class Status

Static class references are class object pointers that are obtained viakernel services (e.g.
somNewQbj ect , somNewCl assRef erence, SOMj ect : : sonCet O ass) that take a
statically obtained class data reference (i.e.: the address of the exported

<cl assName>d assDat a structure). They do not involve CFM to either search for or load
class code from the disk. The code for a statically referenced classis guaranteed to be in the
closure for the code doing the reference, and thus to have been already loaded by CFM.
The class code for these referencesis guaranteed be loaded for at least aslong as the code
that has the static class data reference in the first place. The operations that obtain a class
object reference statically have higher performance and less overhead than onesin the
dynamic reference category. However they are less securein that static references are not
designed to be able to outlive the lifetime of the code that had the initia static class data
reference. By contrast, the lifetime of a dynamic referenceis not limited. Thus, statically
obtained references are intended for local and short term use of the class objects where the
locality appliesto the code involved in the CFM closure. When aclass' reference count
goesto zero, if the class has static status, then thereis no CFM reference to release. The
class should be considered to be unbuilt.

Dynamic Class Status

Dynamic class references are class object pointers that are obtained via runtime name or id
class lookup services (e.g. SOVl assMyr : : sonFi nddl ass, sonNew(bj ect ByNarre,

sonCet Dynani cC assRef er ence). They use CFM to search for and load a class from the
disk and they always obtain a CFM reference to the class code. Thus having a dynamic
class reference guarantees that the code for the class and all its inheritance hierarchy will not
be unloaded until the last referenceisreleased. If aclass' reference count goesto zero and
the class has dynamic status, then the CFM reference to the class' codeis released.

Using Static vs. Dynamic

Once dynamic operations are used to obtain areference to aclass, al referencesto the class
then become dynamic references. Thisisto say that at such time as adynamic reference to
the classis requested, the kernel will obtain areference to the class code with CFM in order
that it can prevent class code unloading until at least such time as all referencesto the class
through the kernel are released. Programmers should generally not need to worry about the
difference between static and dynamic references, asthe 2.0.7 kernel automatically obtains
dynamic references whenever by name operations are used - those operations that could
have loaded new code from the disk. However, interfaces should not be designed to pass
static class object references outside code in the CFM closure or load set that created them.
If an interface chooses to pass a static class object reference, it should be converted to
dynamic first, viaSOMO ass: : sonvakeDynani cd assRef er ence. Thiswill ensure that
the reference is safe to use outside the creating closure.

SOMobjects[] for Mac OS 10 Programmers Guide 1.0

Note: this appliesto instance objects as well; if the instance objects of agiven class are to
be handed outside the closure they were created from, the class should have dynamic
status.

SOMobjects] for Mac OS and CFM Interaction

The kernel uses CFM's servicesto locate class DLLS, to load or lock class code, to release
class code, and also to be informed when class code is being unloaded.

When the kernel searches for a class by name or id, it uses CFM’ sGet Shar edLi brary call
to locate the library, passing in the exact name supplied. Provided that CFM can locate a
library with such a' cfrg' name, then the kernel will search for the

<cl assName>0 assDat a export inthat DLL. If the export isfound then it is used to bring
up the desired class.

Code fragments not in the default search path or which do not export the

<cl assName>Cl assDat a global will beinaccessible to the kernel unlessthey arefirst
loaded in by some other means and then accessed in such away asto cause their class(es)
to be built. Classes will automatically become known to the kernel if acode fragment uses a
classinternaly or if it had asonmNewd ass call inits CFM init routine which will then be
used to satisfy the request.

The kernel API may be used to load and unload code fragments according to default CFM
Get Shar edLi brary rules. It is aso both possible and reasonable to load a class or class
containing DLL via CFM directly. The following example uses CFM to load a specific code
fragment which makes its presence known to the kernel and is accessible through kernel
APIsuntil it is unloaded.

err = CGetDi skFragnent (... , kLoadLib, & theCFMConnectionld);
theld = som dFronttring ("Mdul eNane: : C assNanme");
cl assj = sonet Dynani cC assRef erence

(theld, major, mnor, NULL);
SOVFree (theld);
use (classj);
Gl oseConnection (& theCFMConnectionld);
sonmRel easeC assReference (classQbj);

Note: If the class code needs to outlive the CFM unload call, then a dynamic reference to
the class should be obtained as in the above example, which uses

sonGet Dynani cC assRef er ence. Even if the programmer releases the direct CFM
reference to the code, the code will not go away until the al referencesto the class are al'so
released.

SOMobjects[] for Mac OS 11 Programmers Guide 1.0

Thus, for each classin agiven code fragment, a' cfrg' name or aiaswith the fully
qualified class name should be present. In addition, the <cl assNane>C assDat a global
should be exported. In some cases, it may be desirable to announce the class to the kernel
viaasomNewd ass cal inthe DLL’s CFM init routine. This can be done in addition to, or
in place of the export and the' cfrg' name. Using thesomewd ass call in the init routine
of the DLL can be useful if the DLL might be loaded from a non-standard search path
location via CFM directly instead of using the kernel. When using thesomNewd ass call in
theinit routine, the export (and' cfrg' name or alias) is still recommended, sinceitis
necessary for other operations such as subclassing. There is no (longer @) requirement for a
matching unregister call in the termination routine for the DLL.

SOMabjectsl] for Mac OS class libraries that export all their classes via CFM and provide
a'cfrg' entry for each class do not require an initialization (init), main, or termination
(term) routine. Thisis now handled automatically by the kernel.

SOMobjects] for Mac OS does not invoke any specified main routine when loading class
libraries.

It isimportant not to obtain areference to one' s self and then expect it to be released in
one’' s somUninit (destructor), since the outstanding reference means that the object will
never be destructed. It is aso important to not obtain areference to one’s own class object
during the initialization routine and then expect to be able to release it in the termination
(term) routinefor class' DLL, sinceif the classis considered dynamically loaded, the
kernel will never release its CFM reference due to the outstanding reference obtained to
one's own class.

The SOM ClassM gr

The class manager provides facilities for dynamically loading and unloading code and is
documented in the IBM Users Guide. It is expected that direct access to the class manager
object will not be needed since the kernel provides higher level functions to accomplish the
same purpose. For maximum code portability, use of the kernel functionsis recommended.

To access the global class manager object, use the function
somGet O assManager Ref er ence which returns a duplicated reference to the kernel global
object. When finished it should be released withsonRel eased assManager Ref er ence.

To capture a snapshot of currently registered classes, allocate an object of type
SOVRegi st er edd assLi st . The object returned will contain a complete thread-safe list of
all classesregistered at the time of the call.

Subclassing of the class manager is not recommended in a component environment such as
the Macintosh.

SOMobjects[] for Mac OS 12 Programmers Guide 1.0

Customization of the System Object Model

Chapter 5 of the IBM Users Guide describes how to customize the System Object Model
services. Since on the Macintosh, the kernel initializes itself during its CFM initialization
routine, the timing for installing these customized services cannot be done as the first part
of “main.”

The SOMobjects standard API alows for customization of several aspects, namely,
memory management, class library loading, error condition handling, debugging and
diagnostic output handling, and class management. Each of these areas (except class
management) are customized via kernel-exported data items, which are pointersto
functions.

Error handling

The System Object Model’ s default error handling isto call its process termination routine
on errors and to ignore warnings. For Applications, Exi t Toshel | iscalled on fatal errors.
This behavior can be overridden using the mechanisms described in the|BM Users Guide.

Examples of fatal errorsinclude:
* Invoking amethod on a null object pointer.
» Invoking a method with an object of the wrong class.

The kernel does not guarantee that such errors will always be detected.

Output and Diagnostics

The default diagnostic output isimplemented by reporting diagnostic information to afilein
the current directory called “ SOM.output.” The fileis opened each time a CR-terminated
line of text iswritten to the output routine. This causes the file to contain compl ete debug-
ging information even if the program crashes, and also allows viewing and editing of
Output while SOMobjects] for Mac OS isin operation. Output is written for each fatal
error, or when calls are made to somPrintf. This behavior can be overridden using the
mechanisms described in the|BM Users Guide.

Use of sonPri nt f requirestheroutinevsprint f from the standard C library. In order to
reduce the size of the kernel, and considering the fact thatsonPri nt f isprimarily ade-
bugging facility, the kernel does not link in the static version of vspri nt f . Instead, the
kernel dynamically loads the shared standard C library the first time thatsonPrintf is
caled.

SOMobjects[] for Mac OS 13 Programmers Guide 1.0

Custom Memory Management

The memory management routines for SOMobjects’] for Mac OS areinvoked by the
standard procedure pointers SOMcal | oc, SOVFr ee, SOWaI | oc, and SOVReal | oc. Theim-
plementation uses the Macintosh Memory manager, makingNewpt r and Di sposePt r calls
in the application’ s heap. Replacement of these globals is not recommended on the
Macintosh, due to thread safety issues as well as the possibility of invoking incompatible
memory managers between allocation and freeing.

Loader Customization

The System Object Model provides access to the global procedure pointers

SOML oadM odule and SOM DeleteM odul e as a means of modifying the default behavior of
the CFM based dynamic class management. Use of these globalsis not recommended. If
the built in behaviors of the kernel and class manager objects are insufficient to dynamically
load classes you are interested in, see the section on “SOMaobjects] for Mac OS and CFM”
for information on how to use the CFM directly for this purpose.

If you really must...

If you need to replace the default memory manager, this must be done before the kernel
initializesitself and before any clients call it. Since the kernel may be used by the initializa-
tion routine of aclasslibrary or client, getting in front of all other callersis not possible
without a new mechanism.

This mechanism is as follows: the kernel imports the following routines from alibrary with
the same name, e.g., SOMCust omvenor yMyr , SOMCust onEr r or Myr and

SOMCust omut put Myr . In the kernel, the imports are marked with both “weak” and “init-
before.” Therefore, if alibrary with the name, say, SOMCust omMvenor yMyr , isin the path of
an application that uses SOMobjects[] for Mac OS, this library will be loaded and both its
initialization routine (if present) and its SOMCust omiverror yMgr export routine (also
optiona) will be run during the initialization of the kernel. Either the initialization routine
(recommended), or the SOMCust omvenor yMgr export routine should contain code to swap
the default services, using the normal facilities (switching the function pointers). All the
routines are invoked beforesonEnvi r onnent New initializes the kernel.

SOMobjects[] for Mac OS 14 Programmers Guide 1.0

Building Class Librariesand Clients

Overview

Chapter 2 of the|BM Users Guide provides examples of building classes and clients, both
in C and C++. Theinterface to a new class must be defined in thelnterface Definition
Language, alanguage bearing afamilia resemblance to C++. The..idl fileisthen compiled
with the sont compiler, with appropriate emitters named on the command line. The choice
of emitters depends on whether C or C++ isto be used for the source code of the client
application and for the source code of the class implementation; these choices being made
independently. It is possible to have more than one class interface defined in asingle .idl
file, but this practice is generally not recommended.

Compilation of .idl files during development typically resultsin two header filesand a
skeletal implementation file (the IBM documentation calls it atemplate file). The two header
files, <fil eStem> with. hand.i h suffixesfor C, and<fil eSt em> with. xh and . xi h
suffixes for C++, are included when compiling the class implementation. The skeletal
implementation file, <fi | eSt en». ¢ for Cand <fi | eSt en». cp for C++, contains the
appropriate #i ncl ude directives and skeletal functions corresponding to each declared class
method. The programmer then has to fill in the implementation with his or her own code.
At various points during class devel opment, after changes are made to the class and method
definitionsin the .idl file (e.g.: adding a new method, or adding/removing or changing a
parameter in amethod), the IDL compiler can be re-run on the existing (no longer skeletal)
implementation file, which keeps the implementation file in sync. The sompdl tool is used
to produce a public version of the .idl file which does not contain items which were marked
intheorigina .idl file by enclosure within#i f def __ PRI VATE__ ...#endi f (See|BM
Users Guide, page 4-51) Typically the class binary and the public version of the .idl file are
supplied to developers who will be clients of the class binary.

Compilation of .idl files by clientstypically consists of taking the class devel oper supplied
idl file, and producing one of two header files, <fi | eSt en». h for Cand <fi | eSt en». xh
for C++ depending upon the language of the client's choice. Clients may choose their own
sonc compiler settings when compiling the client file (independent of the settings used by

the implementor).

SOMobjects[] for Mac OS 15 Programmers Guide 1.0

Thisillustration shows the use of the somc compiler and sompdl tool.

emitters:
for C++ (for C)

Client bindings;
defi nes class nethods;
contains private methods

| npl ement ati on bi ndi ngs;

contains struct for direct
access to instance data;

cont ai ns SOM bi nary cl ass

_» |E
= Fm xh () il
= — ?ﬂ hello.xh
= = o
xlih ()
hello.idl somc \ —
Mast er |1 DL Source The 1D =
for the "hell 0" conpi | er \ ex
class definition (usedwith-poption) \ P

\
xe (
\

' -

\
— \
= '

sompdl

The "pdl " facility
(del etes private sections)

-

Use of the SOM IDL
compiler for class
implementation

hello.idl

Public I DL file
for the "hell 0"
class definition;
private sections
have been renoved

emitters

+4+= (C)
(=10 [=]] =
% —xh (h)—®™|=
somc hello.xh
The 1DL
conpil er

\ hello.xih

hello.exp

hello.cp

definition | ayout for
use by the runtine kernel

Li nker export file;

exports the entry
poi nt needed to make a
cl ass available to other
fragments;

(not needed on 68k)

Mai n i npl ement ati on source;
originally nade by sont;
edited by devel oper;
updated in place by som

conpiler if class
definition (.idl
changed

file)

Use of the SOM IDL
compiler by a class
client

Client binding file;
defines class nethods
for access by clients

SOMobjects[] for Mac OS 16

Programmers Guide 1.0

Building Fat Libraries

The following illustrative command lines are taken from the “hello” C++ Lib example.
SOMabjects] for Mac OS makes use of constant string data, requiring the use of the “-b3”
option for SCpp and the “-roistext on” option to PPCLink.

sont -p -e xc, xi h,xh,exp hello.idl

SCpp -nmodel cfnflat -b3 hello.cp -1
M Cpp hello.cp -o hello.cp.xcoff -1

I Link -rmodel cfnflat -state nouse -pad O
-xm sharedlibrary -fragNane hell o
-0 hellocp.tnp hello.cp.o
"{ CFMB8KLI braries}"NuMacRunti ne. o
"{SharedLi braries}"sonmib
"{Shar edLi braries}"StdCLi b
"{SharedLi braries}"InterfacelLib
MakeFl at hel l ocp.tnp -0 hell ocp. 68k

QU QY O Y D

PPCLi nk -roi stext on -@xport hello.exp
-xm sharedlibrary -fragNane hell o
-0 hell ocp. ppc hell o.cp. xcof f
"{PPCLi braries}"StdCRunti ne.o
"{PPCLi braries}"PPCCRunti ne.o
"{Shar edLi braries}"somib
"{Shar edLi braries}"StdCLi b
"{SharedLi braries}"InterfaceLib

QU Y Y QY O

Delete -i hellocp
Mer geFragment hel | ocp. 68k hel | ocp. ppc hel | ocp

Building a Fat Client Application

sont -e xh ::hello.idl

SCpp -nodel cfrseg -b3 main.cp -1
M Cpp main.cp -o main.cp.xcoff -1

I Li nk -nodel cfrseg -state nouse -pad 0O 0
-conpact -o mai ncp. 68k
mai n. cp. o hel l ocp 0

(7]

SOMobjects[] for Mac OS 17 Programmers Guide 1.0

"{CFMB8KLIi braries}"NuMacRunti ne. o 0
"{Shar edLi braries}"somib 0
"{Shar edLi braries}"StdCLi b

"{SharedLi braries}"InterfaceLib

PPCLi nk -roistext on -m __cplusstart
-0 mai ncp. ppc main.cp. xcoff hell ocp
"{PPCLi braries}"StdCRunti ne.o
"{PPCLi braries}"PPCCRunti ne.o
"{PPCLi braries}"MCPlusLib.o
"{Shar edLi braries}"somib
"{Shar edLi braries}"StdCLi b
"{SharedLi braries}"InterfaceLib

QU Y Y Y

Duplicate -y nmaincp. 68k maincp
Mer geFragment nmi ncp. ppc mai ncp

Reference

This section documents the A pple recommended devel oper interface to theSOM objectd |
for Mac OS runtime kernel and classes. These functions have been designed to provide
functionality with high performance.

There are functions and methods supported by the runtime kernel, documented in thelBM
User’s Guide that are not listed in the Apple recommended interface. These other functions
and methods are present as system programming interfaces to support other subsystems
(such as DSOM) and to provide cross platform backward compatibility. Use of functions
and methods not in the recommended set may result in higher overhead and lower
performance than desired.

Kerne API

Allocating and Releasing Object References

somNewObject - macro

SOMobjects[] for Mac OS 18 Programmers Guide 1.0

Thisisakernel operation that creates an object by class name identifier (not astring). Itis
provided to bypass the need to access the class object to create an instance object of the
class. NULL isreturned on failure to create the class, on version number failures, and on
out of memory failures.

somNewV er sionedObject - macro

Thiskernel operation is the same as somNewObject, except that this operation alows
specification of exact version numbersinstead of using the class version numbers that were
current at compile time of the source code. NULL is returned on failure to create the class,
on version number failures, and on out of memory failures.

somNewObjectByld - function

Thiskernel operation obtains a dynamic reference to the class which then released. Before
release, an instance object of the classis created. If obtaining the dynamic class reference
fails, or creating the instance object fails, NULL isreturned.

somNewObjectByName - function

Thiskernel operation is the same as somNewObjectByld, but takes a zero terminated string
instead of a somld for the class name.

somReleaseObjectReference - function

Thiskernel operation releases an object reference. If it turns out to be the last outstanding
reference to the object, then the standard del ete operations are invoked.

Class Object Access

somNewClassRefer ence - macro

Thiskernel operation takes a class name as an identifier (atoken, not astring) and returns a
class object or NULL on failure. The version requested is the current interface version at
build time. The returned class object must be rel eased via somRel easeClassReference.

somNewV er sionedClassRefer ence - macro

This kernel operation is the same as somNewClassReference, but allows for specification
of version checking with numbers other than the compile time interface version. Thisis
useful when using interfaces which are more modern than absolutely required.

somGetDynamicClassRefer ence - macro

This kernel operation obtains a dynamic reference to a class. The returned class object must
be rel eased via somRel easeClassReference. Y ou can choose to hold onto the reference to
the class object until such time as you want the class DLL to go away, which will prevent
thrashing if you are going to use the class repeatedly. Or, you can release the class code
reference immediately, and leave the class to be unloaded when the last outstanding object
of the classisfreed.

somReleaseClassRefer ence - macro

SOMobjects[] for Mac OS 19 Programmers Guide 1.0

Thiskernel operation releases a static or dynamically obtained class reference. If at some
point the class obtained “dynamic” load status, then when the use count goes to zero (using
this release mechanism) the classes code will be released. If releasing the code actually
causes the code to be unloaded, then the class object will be freed.

somNewClass - macro

Thisfunction is used to announce the availability of aclassto the kernel. It is generally not
required, though can be useful in helping locate the class. For example, if the DLL isnot in
the standard search path, then the kernel will not be able to load the library via standard
services; the library would have to be loaded via CFM directly. In such a case, the
somNewClass call would identify that a new class (that the kernel could not otherwise find)
had been |oaded.

somKillClass - macro

Thisfunction is used to announce the unavailability of aclassto the kernel. If the classes
code and data is loaded and unloaded via CFM, then somKillClassis not necessary and
should not be used. However to illustrate its use, it could be called from withinaDLL’s
termination routine to announce the unavailability of the class. It is designed for use with
classesthat are not loaded using CFM. One such possibility could be a Small Talk system
which may dynamically create a SOMObject based class without loading it from the disk.

Class Manager Access

somGetClassM anager Reference - function

Returns a duplicated reference to the kernel class manager object which must be released
via somRel easeClassM anagerReference when no longer needed.

somReleaseClassM anager Refer ence - macro

Releases the reference to the kernel class manager obtained from
somGetClassM anagerReference.

lds

corbastring - type
A null terminated character string corresponding to the IDL datatypest ri ng.
somld - type

Anintermediate representation of a string which can represent a class or method name.
somlds are not SOMObjects. somlds have allocated storage that should be freed via
SOMFree.

somldFromString - function

SOMobjects[] for Mac OS 20 Programmers Guide 1.0

Creates a somld from a string. The somld can be passed to various other kernel operations.
The somld must be freed by the caller using the function pointed to by SOMFree.

somM akeStringFromlid - function

Returns the string associated with the id when it was created. The returned string should be
freed by the caller using the function pointed to by SOMFree.

somKernelld - type

Thistypeisintroduced to differentiate between regular somlds which are owned by the
caller (as handed out by somldFromString) and kernel ids which are owned by the kernel
(as handed out by somGetM ethodDescriptor). The change to use somKernellds for the
kernel owned return values allows for the introduction of functions that trandlate the kernel
ids into regular somlds for consistency.

somConvertAndFreeKernelld - function

Thiskernel operation receives akernel id and convertsit to aregular id. Be sure to free the
id returned when need for it is through.

somFreeKernelld - function

Thiskernel operation frees akernel id. Thisis called when amethod or function isinvoked
that returns a kernel id that is not wanted.

Environments

SOM _InitEnvironment - macro

Initializes aloca environment structure (clearsit). For use with stack based environment
structures.

SOM _UninitEnvironment - macro

Uninitializes alocal environment structure (i.e.: frees any exception data, if set). For use
with stack based environment structures.

SOM _CreatelL ocalEnvironment - function
Allocates alocal environment structure and initializesit (clearsit).
SOM _DestroyL ocalEnvironment - function

Uninitializes an environment structure (i.e.: frees any exception data), and then releases the
environment structure.

Exception Handling

somExceptionFree - function

SOMobjects[] for Mac OS 21 Programmers Guide 1.0

Rel eases the storage associated with an exception referenced from an environment variable.
Used during handling of exception returns.

somExceptionld - function

Returns the name of the exception given an environment variable. Used during handling of
exception returns.

somExceptionValue - function

Returns the value of the exception given an environment variable. Used during handling of
exception returns.

somSetException - function

Marks an exception in an environment structure. Use to indicate an exception.

Memory

SOMMalloc - pointer to function

The function pointed to by SOMMalloc allocates free storage and returnsit. Note that
SOMMalloc istask safe. Returns null when not enough space. Use the function pointed to
by SOMFree to dispose of the memory.

SOM Fr ee - pointer to function

The functionisfor releasing storage that was allocated via SOMMalloc, SOM Calloc or
SOMRedlloc. It isaso for releasing storage of non-object data returned by pointers from
kernel and other functions and methods. Note that SOM Free istask safe.

SOM Calloc - pointer to function

The function pointed to by SOMCalloc allocates free storage and returnsiit after clearing the
storage. Note that SOMCalloc istask safe. Returns null when not enough space. Use the
function pointed to by SOMFree to dispose of the memory.

SOMRealloc - pointer to function

The function pointed to by SOMRealloc re-allocates free storage originally allocated by
SOMMalloc, SOMCalloc or SOMReadlloc, and returnsit. Note that SOMRealloc is task
safe. Returns null when not enough space. Use the function pointed to by SOMFree to
dispose of the memory.

SOM Object API

soml nit - method

SOMobjects[] for Mac OS 22 Programmers Guide 1.0

This method is the object's constructor, automatically invoked by most object allocation
services. Override this method to initialize any instance data introduced by the overriding
sub-class. Note that al instance datafor an new object is automatically set to zero prior to
its construction, removing the need for overriding this method in many cases. This method
cannot be invoked on an object repeatedly.

somUninit - method

Destructs the object. Override somUninit to release storage or references upon object
destruction. Note that this method should not be invoked directly unless the destructing
objects created viasomRenew (i.e.: auto objects). Prefer the use of somDestructA utoObject
for destructing auto objects. Look for Apple documentation on building SOM objects
runtime compilers.

somDuplicateRefer ence - method

Thiskernel operation acquires areference to the given object. A new object pointer is
returned, and should be taken as the new reference.

somCompar eRefer ence - method

Thiskernel operation compares two object references for object identity. It should be used
to determine object identity instead of direct pointer compares for equality.

somRelease - method

Use this call to release areference to any object or class. If the reference count goes to zero,
the object will be freed provided that its somCanDelete call returns true. Note the currently,
use of somReleaseClassReference and somRel easeObjectReference are preferred for source
portability to IBM platforms; it is easier to provide simple source compatibility for kernel
functions than for kernel methods.

somFr ee - method

If the object has outstanding references then one of the referencesis released and the object
is not destructed or deallocated. If the object has only one outstanding reference (i.e.: its
ref. count goes from 1 to 0) then the method somCanDelete isinvoked to determine if the
object should be deleted. The base implementation of somCanDelete aways returnstrue. If
somCanDelete returns true, then the object is destructed (via somUninit) and deall ocated
using the class deallocation operation. Note that if the object's reference count is zero (or
less) on entry to somFree, then the somCanDelete test is bypassed and the object is
destructed and deallocated.

somCanDelete - method

Thiskernel operation is provided to allow classes to prevent the destruction of an object.
When the use count of an object goesto zero, then prior to the destruction of the object (the
invocation of somUninit) the somCanDelete message isinvoked. If the somCanDelete
message returns true, the object will undergo normal destruction. Otherwise, the object will
be left undestructed.

somGetClass - method

SOMobjects[] for Mac OS 23 Programmers Guide 1.0

Returns areference to a class object given the receiving instance object. This class object
reference does not mark the class as dynamic. The class object reference must be rel eased
via somReleaseClassReference by the caler.

somGetClassName - method
Invokes somGetName on the class object. Do not attempt to free the returned string.
soml sA - method

Tests whether the receiving object is an instance of the indicated class or of one of its sub-
classes.

soml sl nstanceOf - method

Tests whether the receiving object is an instance of the indicated class.

SOMClass API

An important rule for meta-class programming is that no methods introduced by SOMClass
should ever be overridden. While this limits the utility of meta-class programming, it
guarantees correct operation. Specia class frameworks may be available to alleviate this
restriction.

somNew - method

Used to allocate instance objects of the receiving class. Invokes the object's constructor,
sominit.

somM akeDynamicClassRefer ence - method

Usethiscall to convert a static class reference into a dynamic class reference (i.e.: to give
the class dynamic status). Thisisused if the interface to the class required handing out
(statically obtained) class object referencesto arbitrary clients.

somGetlnstanceSize - method
Returns the total size of an instance of this class.
somGetName - method

Returns the name of the class. The return value is a pointer to a constant zero terminated
string which cannot be freed.

somClassReady - method

Invoked by the runtime kernel to let the class know that it has been initialized and to give it
achance to perform any additional initialization beforeit is used.

somGetVersionNumbers - method

Returns the major and minor version numbers for this class.

SOMobjects[] for Mac OS 24 Programmers Guide 1.0

somDescendedFrom - method

Used to verify inheritance. Tests whether a specified classis derived from the receiving
class.

SOMClassMgr API

somClassFromld - method

Returns areference to a class object given a somld. Searches for the class locally only; will
not invoke CFM to load the class from the disk. The class referenced by the class object
returned is marked as dynamic. The class object reference must be released via
somReleaseClassReference by the caller. Returns null on failure to locate the specified
class. Note that the function somNewObjectByName or somNewObjectByld ssmplify
creation of objects by name.

somFindClass - method

Returns areference to a class object given asomld. Searches for the class locally first, then
CFM to load the class from the disk if necessary. The class referenced by the class object
returned is marked as dynamic. The class object reference must be released via

somRel easeClassReference by the caller. Returns null on failure to locate the specified
class. Note that the function somNewObjectByName or somNewObjectByld ssmplify
creation of objects by name.

somFindClslnFile - method

Returns areference to a class object given asomld in the specified “file” The“file” is
taken asaDLL name (i.e.: ‘'cfrg' entry name). Searchesfor the classlocally first, then
CFM to load the class from the disk if necessary. The class referenced by the class object
returned is marked as dynamic. The class object reference must be released via

somRel easeClassReference by the caller. Returns null on failure to locate the specified
class. Note that the function somNewObjectByName or somNewObjectByld smplify
creation of objects by name.

somUnr egister Class - method

Releases areference to a class object. Interchangeabl e in operations with the kernel function
somRel easeClassReference. Use somReleaseClassReference instead.

SOMobjects[] for Mac OS 25 Programmers Guide 1.0

SOMRegisteredClassList API

By alocating an object of this class, a snapshot of the classes currently registered with the

kernel may be obtained. This object provides task safe accessto the list of classesit

contains. The object must be released before any of the classesit refersto will be allowed

to unload.
somNewl ndexedClassRefer ence - method

Returns a duplicated reference to the class object represented by a zero based index.
Returns NULL if the index is out of range.

somNumRegisteredClasses - method

Returns the number of classes contained within the list.

Itemsno Longer Supported

SOMobjects 1.0 functions marked as being obsolete in SOMobjects 2.0 are no longer
supported in SOMobjects’] for Mac OS.

SOM Obj ect

somDispatchL, somDispatchV, somDispatchD
See IBM SOM objects documentation for details.

SOM Class

somlnitClass, somOverrideMtab, somAddStaticMethod, sominitM I Class

The somOverrideMtab method is being superseded by a new proxy class creation facility.

Use somNewClass to create classes instead of somAddStaticM ethod. Override
somClassReady rather than sominitMIClass.

SOMobjects[] for Mac OS 26 Programmers Guide 1.0

Differ ences between the Mac OSand IBM implementations

SOMabjectsl] for Mac OS was designed to provide high source compatibility with IBM’s
SOMobjects] implementations. There are some differences to be aware of, however. In
particular, the Macintosh provides backward compatibility to the 2.0 level, whereas IBM
provides backward compatibility to the 1.0 level.

SOM objectsl] for Mac OS Additions

Release Functions

We have introduced severa “release’” kerndl functions. These functions rel ease references
to class objects, class implementations, and other objects like the class manager object.

* sonRel eased assRef er ence - for releasing class objects and implementations
* sonRel easeQbj ect Ref er ence - for releasing user objects
* sonRel eased assManager Ref er ence - for releasing a class manager object

We have restricted direct data access to class objects and to the class manager object.
Accessor APIs have been provided in their place. This was necessary in order to track
object references. The new APIsrequire balancing release calls.

» Direct accessto <cl assNane>C assDat a. cl assObj ect IS replaced with
somNewCl assRef erence (<cl assNane>).

 Direct access to the class manager object viasovd assMyr Obj ect isreplaced with
sontGet Cl assMyr Ref erence ().

Object Allocation

We provide several simplifying facilities to alocate objects without involving class objects
or the class manager directly. These are:

¢ sonmNew(bj ect (<cl assNane>)

¢ sonmNewVer si onedObj ect (<cl assNane>, nmj or Versi on, mi norVersion)
¢ sonNew(bj ect ByNane (“cl assNane”)

¢ sonmNew(Cbj ectByld (classld)

We provide simplified dynamic class object facilities without directly involving the class
manager.

e sontet Dynani cCl assRef erence (classld, .)

SOMobjects[] for Mac OS 27 Programmers Guide 1.0

Determining List of Loaded Classes

In order to capture the list of loaded classes, alocate an object of the class

SOVRegi st er edd assLi st . Objects of this type provide a task-safe snapshot of the class
list at the time they are created. Classesin thislist are prevented from being unloaded until
the SOVRegi st er edd assLi st object is released.

somlds

To differentiate between kernel and client owned somids, we have introduced a new type
and associated APIs. Furthermore a new function has been added which aids in the
efficient handling of somids.

* sonKernel | d - anew type designating kernel owned ids.
e sonfFreeKernel Id

e sonConvert AndFr eeKer nel | d - convertssonker nel | ds into som ds and allows the
kernel to dispose of theitsid.

* sonMakesSt ri ngFroni d - a high performance replacement for sonst ri ngFr on d.

Changes and Removals

Object References

All of the interfaces which return pointers to class objects have been modified to return
references, which must later be released with the releasing interfaces as described. Specific
methods changed were:

* SOMbj ect : : sonGet A ass - returns a class object reference which must later be
released

e SOMO assMyr::sonCl assFrom d - “r
e SOMCl assMyr: : sonFi ndCl ass - “r
e SOMC assMyr::sonFindd assinFile- “”

* SOMCl assMyr::sonLoadd assFile- “” (also designated as protected)

e SOMO assMyr: : sonbnr egi st er O ass - Now releases areference to a class rather than
unconditionally tearing it down.

SOMobjects[] for Mac OS 28 Programmers Guide 1.0

Bindings Interface

The binding level data structure<cl assName>Cd assDat a has been merged into the

<cl assName>Cl assDat a structure in the Mac OS version. These data structures are
primarily used by the language and platform specific bindings. It is recommended that your
code avoid directly accessing them where possible.

The macro _<d assNane>, which accessed the <cl assName>0 assDat a. ¢l assbj ect
field isno longer provided. UsesomNewCl assRef er ence (<cl assNanme>) instead.

Dual Usage Functions

Some functions have multiple purposes which overlap with other API functions. The
following functions or function types have been changed to represent their primary
functionality in order to reduce ambiguity:

* sonEnvi ronment Newinitializes the kernel, but no longer returns the global class
manager. The function sonGet O assManager Ref er ence provides that function.

* Thefunction <cl assName>Newd ass is not provided by the Mac OS version bindings.
Its primary use was to ensure that the class is ready to create instance objects, which is
no longer necessary asthisis handled automatically by the kernel. The second use was
to access the class object, which is already provided by somNewd assRef er ence.

» The object macro SoM Get d ass isno longer supported due to direct global access. Use
the method sontGet d ass instead.

somlds

Functions and methods returning kernel owned ids in the form of a somld were changed to
return instead a somKernelld. Affected were:

¢ SOMJ ass: : sonfzet Met hodDescr i pt or
¢ SOMO ass: : sontzet Nt hMet hodl nf o
Some convenience macros are no longer supported due to performance requirements.

* SOM_StringFromld - should be replaced with the function somM akeStringFromld
instead to obtain acor bast ri ng which must then be freed with SOMFree.

* SOM_IdFromString - should be replaced with the function somldFromString. The
returned somld must then be freed with SOMFree.

» somUniqueKey - Use user defined function instead
» somRegisteredid - Use user defined function instead

SOMobjects[] for Mac OS 29 Programmers Guide 1.0

Version 1.0 support

* integer4 - should bereplaced with1 ong, -or- defined by the user if desired
e zString - should be replaced with char *.
* string - should be replaced withcor bast ri ng.

Other Differences

e SOMj ect : : sonFr ee - One should override somUninit or somCanDelete instead.
Calling through to the parent somFree can cause severe problems in multiple inheritance.
Objects can be created without ever using the somNew / somFree memory allocation
services. Because of these and similar issues, somUninit should be used to receive
messages about object destruction. Method somCanDelete can be used suppress object
destruction.

* som sQbj - Thisfunction isdescribed as being “fail-safe’ in IBM's documentation. It is
NOT fail-safe on System 7. Note that since the kernel does not track all instance objects,
the function somlisObj cannot with certainty actually determine if theitemin question is
an actual SOMODbject, but rather only if it looks like avalid SOMObject.

Cross-Platform Portability

Tipson Writing Portable Code

The magjority of functionality obtainable from the SOMobjects Toolkit is common to all
implementations, so most code takes care of itself. Areasto watch out for are obvious,
functions not available on al platformswill be non-portable.

The SOMobjects] for Mac OS APIs are designed with portability in mind. Where not
directly available from IBM kernels, most are accommodated by compiling with the
appropriate preprocessor define enabled.

Do’'s
+ Usethemodern APIs

* Releasedl references you own

¢ Freedl somlds

SOMobjects[] for Mac OS 30 Programmers Guide 1.0

Don’ts

» Accessglobalsdirectly

* Rely upon the somld interfaces unnecessarily

* Invoke methods described as “ protected”

* Invoke sominit or somUninit directly on objects

* Override methods which could cause dynamically loaded classes to unload

* Mix old and modern API code bases

Porting IBM Code to the Macintosh

By defining the preprocessor symbol __ | BM TO MAC__ to 1 when compiling C/C++ or
IDL files, most IBM style API calls not included in the Macintosh API set can be
accommodated.

Porting Macintosh Codeto IBM

By defining the preprocessor symbol __ MAC TO | BM _ to 1 when compiling C/C++ or
IDL files, most of the APIs ported in this document will be able to run under non
Macintosh kernels.

At the present time the reference interface extensions to SOM Object will not port directly to
non Macintosh platforms. We recommend that subclasses whose clients use these methods
inherit from SOMRefObject (defined in “ somref.idl”) instead. On other platforms, it can be
areal class. A reference implementation is provided in somref.c. Sources for both are
provided as an appendix to this document.

SOMobjects[] for Mac OS 31 Programmers Guide 1.0

Runtime Consider ations

Thread Safety

The function somGetGlobal Environment is not Thread Manager thread-safe on System 7.
When multiple threads may be an issue, use alocal (stack based/automatic) environment
variable initialized with SOM _InitEnvironment, and uninitialized with
SOM_UninitEnvironment instead of using the somGetGlobal Environment function.

Note that Copland versions of the runtime kernel will be Task safe.

Notes and Cautions

Developers and clients of SOMODbject based class libraries should be aware that, due to the
mechanisms of the underlying runtime architecture, 68k class binaries and 68k clients will
not run emulated on Power Macintosh computer systems. The preferred course of actionis
to aways build and package both CFM-68K and Power Macintosh (native) code fragments
in the same classlibrary file. This dual packaging iscalled “fat.” The documentBuilding
Programs for Macintosh with PowerPC on the MPW Pro disc describes how to build afat
application using classic 68k code. The process for CFM-68K is similar. See the CFM-
68K MODA pp example for an illustration of the process.

Since the kernel isimplemented as a standard application level shared library, each
application which usesit is completely independent from al others. Only the lower level
Code Fragment Manager is aware when two processes are using the same class library
code fragment. This allows each application to have a completely independent and separate
class hierarchy and name space.

Multiple inheritance in the System Object Modd isimplemented using atechnique similar to
“virtual” inheritance in C++. A base classwill never be represented more than once in any
hierarchy. An undesirable side effect of virtual inheritance can be seen in the following
example of parent call-through:

interface SOMject { ...sonPrintSelf () ...};

interface B: SOMbject { ...sonPrintSelf : override ...};
interface C: SOMbject { ..sonPrintSelf : override ...};
interface D: B, C{ ..sonPrintSelf : override ...};

D sonPrintSelf ()
{

SOMobjects[] for Mac OS 32 Programmers Guide 1.0

D parent B sonPrintSelf ();
D parent _C sonPrintSelf ();
/* D code here */

Thefirst parent call-through will call B’ssonPri nt Sel f method, which will call
SOMObject’ssonPri nt Sel f method. The second parent call-through will call C's
sonPri nt Sel f method which in turn will call SOMObject’ ssonPri nt Sel f for a second
time.

While this behavior isrelatively harmlessfor sonPri nt Sel f it can be a serious problem for
more significant methods. Note that the same problem exists for C++ when using virtual
inheritance.

SOMobjects[] for Mac OS 33 Programmers Guide 1.0

/1

rights reserved.

/1 sonref.idl

/1 Copyright: 0O 1995 by Apple Conputer,
/1 Al l

#i f ndef sonref _idl

#defi ne sonref _idl

#i ncl ude <sonobj.idl >

i nterface SOVRef Obj ect : SOMbj ect {

SOMbj ect sonDupl i cat eRef erence ();

bool ean sontConpar eRef erence (

SOMDbj ect sonRel ease ();
bool ean sonCanDel ete ();

#ifdef _SOMDL__
i mpl ement ation {
rel easeorder:

somDupl i cat eRef er ence,
somConpar eRef er ence,
sonRel ease,

somCanDel et e;

callstyle = oidl;
external stem = sonref;
maj orversi on = 70;
m norversion = 1;
filestem = sonref;
dl Il name = "sonref.dll";

somRel ease: nooverri de;

#i

fdef _ PRIVATE _
| ong f Ref Count;
sonfFree: override;

functionprefix = sonro_;

#endif /* _ PRI VATE */
b
#endif /* _SOMDL__ */
b

#endif /* sonref idl */

I nc.

in SOMXj ect anChject);

SOMobjects[] for Mac OS

Programmers Guide 1.0

sonref.c
Copyri ght: 0 1995 by Apple Computer, Inc.
Al rights reserved.

* % X X *

#def i ne SOVRef Obj ect _Cl ass_Sour ce
#i ncl ude "sonref.ih"

/* The follow ng macro should be redefined to i nvoke system specific
thread safe (atomic) increnent functions.
Here it is not thread safe. */

#def i ne ATOM CADDTOVEMORY(mem x) \
(*(mem +=(x))

SOM Scope SOMXbj ect* SOMLI NK sonro_sonDupl i cat eRef erence
(SOVRef Obj ect *sontel f)

SOVRef Cbj ect Dat a *soniThi s = SOVRef Obj ect Get Dat a (sontel) ;
ATOM CADDTOVEMORY (& sonThis -> fRefCount, 1);
return sontel f;

}

SOM Scope bool ean SOMLI NK sont o_sonmConpar eRef er ence
(SOVRef Obj ect *sontel f, SOMbj ect* anhj ect)
{

}

SOM _Scope SOMbj ect* SOMLI NK sonto_sonRel ease (SOVRef Cbj ect *sontel f)
{

return ((SOMbj ect*) sonBel f) == an(bj ect;

SOVRef Cbj ect Dat a *soniThi s = SOVRef Cbj ect Get Data (sontel f);
if (ATOM CADDTOVEMORY (& sonirhis -> fRefCount, -1) == 0) {
if (_sonCanDelete (sonBelf))
SOVRef Cbj ect _parent _SOMDbj ect _sonfFree (sontel f);

return O;

}

SOM Scope void SOMLI NK sonro_sonfree (SOVRef Obj ect *sonSel f)
{
SOVRef Cbj ect Dat a *soniThi s = SOVRef Cbj ect Get Data (sontel f);
if (ATOM CADDTOMEMORY (& soniThis -> fRefCount, -1) <=0) {
if (sonThis->fRefCount < O || _sonCanDelete (sontelf)
SOVRef Cbj ect _par ent _SOMbj ect _sonfFree (sonBel f);

)
}
return O;

}

SOM Scope bool ean SOMLI NK sonr o_sonCanDel et e (SOVRef Obj ect *sontel f)
{

}

return 1;

SOMobjects[] for Mac OS 35 Programmers Guide 1.0

